

DBU-Forschungsprojekt Ganzheitliche Sanierung von Schulen

gefördert durch

www.dbu.de

Institut für Gebäude und Solartechnik - IGS

Institut für Gebäude und Solartechnik - IGS Interdisziplinäres Team

Institut für Gebäude und Solartechnik - IGS

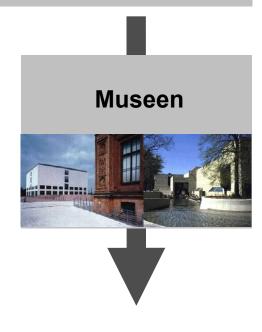
Aktuelle Forschungsvorhaben

Ganzheitliche Sanierung von Nichtwohngebäuden

PROsab

future:workspace

EnBop


Energie-Navigator

Integrale Planungsphase Landkreis Goslar

Lüftungskonzepte in Bildungsstätten

Dena-Coaching

Nachhaltige Museumssanierung

Museen als Leuchturmprojekte

Forschungsprojekt

GASS - Ganzheitliche Sanierung von Schulen

Bauphysik / Gebäudetechnik

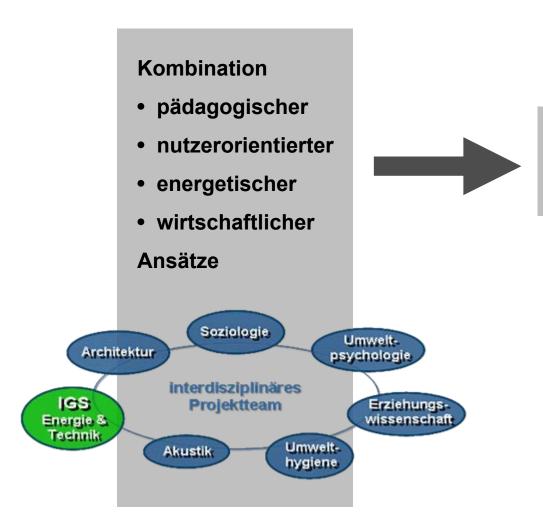
Architektur

Pädagogik Soziologie und Psychologie Prof. Fisch, Institut für Gebäude- und Solartechnik

Prof. Goydke, Ingenieurbüro für Raum- und Bauakustik

Prof. Léon, Institut für Entwerfen und Gebäudelehre

Dittert & Reumschüssel, Architektur und Stadtentwicklung

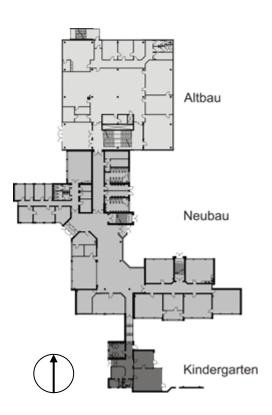

Prof. Kemnitz, Institut für Erziehungswissenschaft

Prof. Linneweber, Institut für Psychologie

- Nutzung von Synergien
- Ausschöpfen neuer Potentiale

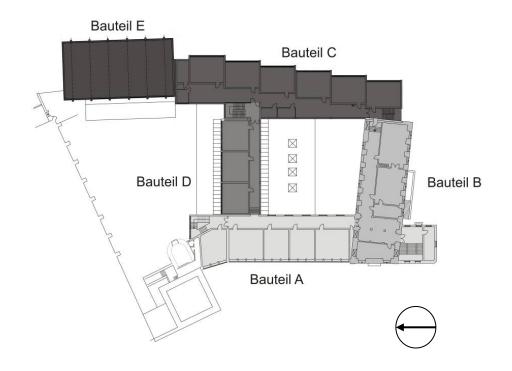
Verbesserung:

- Behaglichkeit (thermisch, visuell, akustisch)
- Leistungsfähigkeit von Schülern und Lehrern
- Erhaltung der Bausubstanz
- Energieeffizienz
- Wirtschaftlichkeit im Betrieb



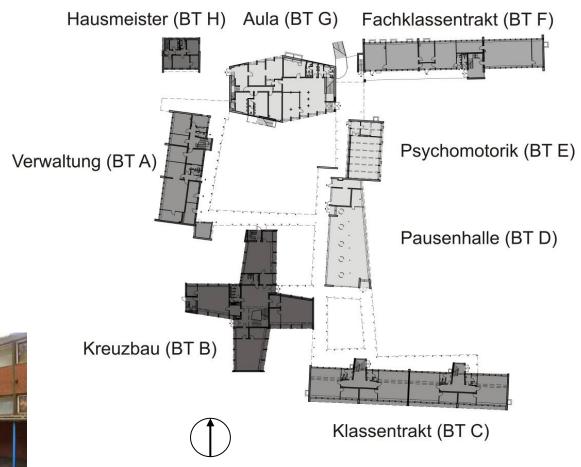
Regenbogenschule, Wolfsburg

- Grundschule
- 230 Schüler und 26 Lehrkräfte
- Baujahr 1974 / 1983
- 9.100 m² NGF gesamt
- davon Altbau 5.500 m² NGF
- Spez. Heizwärmeverbrauch 143 kWh/(m²a NGF)



Bischöfliches Gymnasium Josephinum, Hildesheim

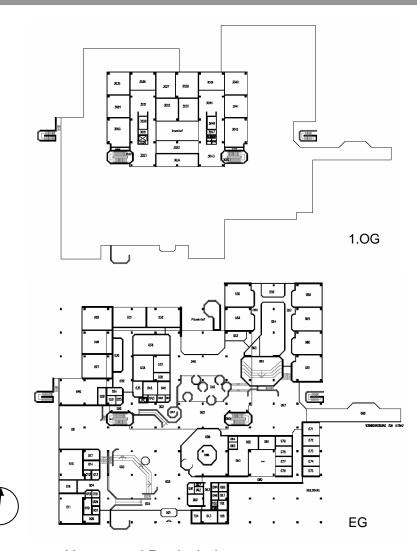
- Gymnasium
- 1.100 Schüler und 80 Lehrkräften
- Baujahr Bauteil A + B 1694 (Wiederaufbau 50er)
- Baujahr Bauteil C + D + E 1965
- 7.300 m² NGF gesamt
- Spez. Heizwärmeverbrauch 152 kWh/(m²a NGF)



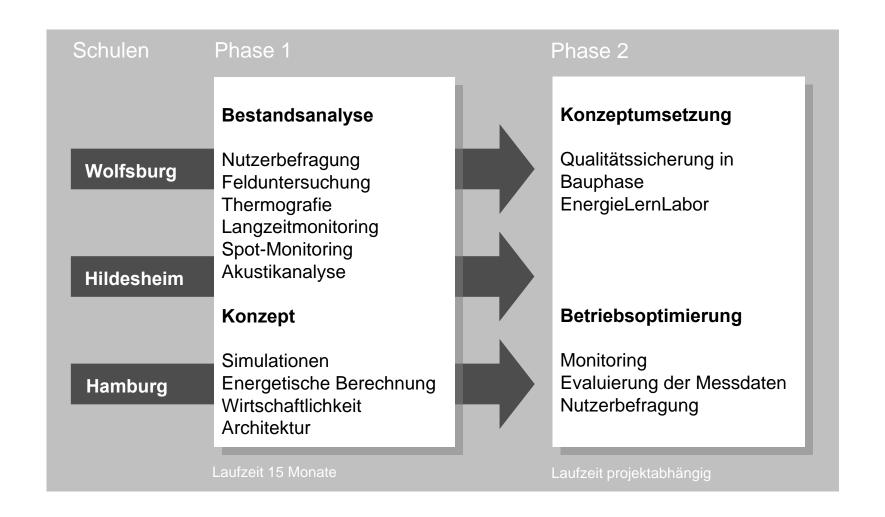
Grundschule Hohe Landwehr, Hamburg

- Grundschule
- 280 Schüler und 22 Lehrkräfte
- Baujahr 1958 bis 1963
- 5.200 m² NGF gesamt
- Spez. Heizwärmeverbrauch 177 kWh/(m²a NGF)

Integrale Planungsphase zur ganzheitlichen Sanierung


Schule Landkreis Goslar

Schulzentrum Langelsheim


- Haupt-, und Real-, Grundschule, Sporthalle
- 784 Schüler
- Schule Baujahr 1976 bis 1977
- Sporthalle 1979
- 18.916 m² NGF gesamt
- Spez. Heizwärmeverbrauch 144 kWh/(m²a NGF)

Bestandsanalyse

Nutzerbefragung Felduntersuchung Thermografie Langzeitmonitoring Spot-Monitoring Akustikanalyse

Themenfelder

- Komfort & Behaglichkeit
- Raumwahrnehmung
- Aufenthaltsqualität
- Nutzerverhalten
- funktionale Anforderungen

	Lehrkräfte Schüler	
Wolfsburg	12 (10 weibl./ 2 männl.)	81 (4 Klassen)
Hildesheim	32 (18 weibl./14 männl.)	102 (4 Klassen)
Hamburg	17 (16 weibl./ 1 männl.)	61 (3 Klassen)

Alter der Schüler: Grundschule 8 bis 10 Jahre Gymnasium 13 bis 16 Jahre

В	Behaglichkeit und	Aufenthaltsqualität

B1 Beurteilen Sie bitte die Aufenthaltsqualität in Ihrem Klassenraum

		nie	selten	gelegentlich	häufig	immer
a)	Im Sommer ist es zu warm.	0	0	0	0	0
b)	Im Sommer ist es zu kalt.	0	0	0	0	0
c)	Im Winter ist es zu warm.	0	0	0	0	0
d)	Im Winter ist es zu kalt.	0	0	0	0	0
e)	Im Sommer ist die Luft zu feucht.	0	0	0	0	0
f)	Im Sommer ist die Luft zu trocken.	0	0	0	0	0
g)	Im Winter ist die Luft zu feucht.	0	0	0	0	0
h)	Im Winter ist die Luft zu trocken.	0	0	0	0	0
i)	Die Luft ist gut/frisch.	0	0	0	0	0
j)	Die Luft ist schlecht/verbraucht.	0	0	0	0	0
k)	Es treten Zugerscheinungen auf.	0	0	0	0	0
l)	Es kommt zu Geruchsbelästigung.	0	0	0	0	0
m)	Ich empfinde das Klima im Klassenraum insgesamt als behaglich.	0	0	0	0	0

Wenn es im Klassenraum zu Beeinträchtigungen der Aufenthaltsqualität kommt, beschreiben Si
diese bitte kurz!

B2 Wie wichtig sind Ihnen die folgenden Kriterien im Klassenraum für Ihre Arbeit?

		sehr wichtig	eher wichtig	teils-teils	eher unwichtig	völlig unwichtig
a)	Raumtemperatur (Sommer)	0	0	0	0	0
b)	Raumtemperatur (Winter)	0	0	0	0	0
c)	Luftfeuchtigkeit (Sommer)	0	0	0	0	0
d)	Luftfeuchtigkeit (Winter)	0	0	0	0	0
e)	Frische der Luft	0	0	0	0	0
f)	Zugerscheinungen	0	0	0	0	0
g)	Geruchsbelästigung	0	0	0	0	0
h)	Behaglichkeit insgesamt	0	0	0	0	0

positive Orte

Schülerbücherei

"Hier wohl ich mich ganz gut weil es so Farbig ist und ganz ruich und leize" (Ali)

Computerraum

"Das ist mein Liblings ordt, Weil es dordt sehr schpas macht und die Coputer sauber sind. (Seyda)

Schülerbücherei

"Ich finde diesen Raum gut weil ich liebe Bücher und lese gerne. Es ist auch schön warm und die Bücher sind schön bund und es ist schön sauber." (Mandy)

negative Orte

WC

"Da ist es nicht schön und kalt und es stingt da und es ist nich sauber" (Lisa)

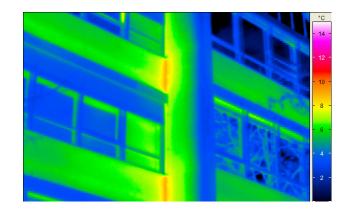
WC

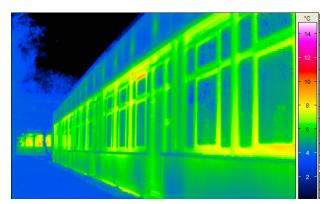
"An diesem Ort ist es voller Wasser. Ich habe angst wenn ich alleine bin. Die Toleten sind voller papir drin. Und es gibt kein Toleten papir." (Azad)

Werkraum

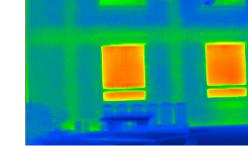
"Hier fühle ich mich nicht so gut weil es hir immer laut ist und nicht ruhig." (Sipan,

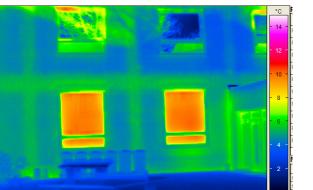
GASS

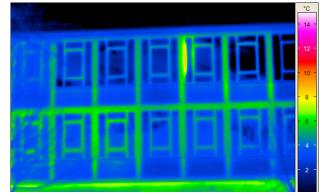



Nahwärmenetz

Historische Gebäude







GASS

Gebäude der 70er Jahre

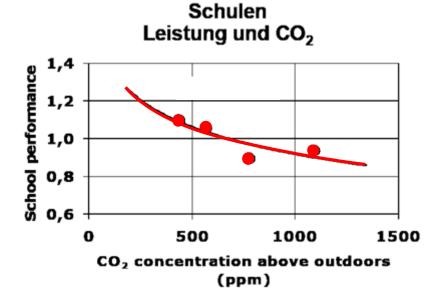
Sanierung vor 3 Jahren

Gebäude der 50er Jahre

Innenraum:

Lufttemperatur Rel. Luftfeuchte CO₂-Konzentration Fensterkontakte Heizkörpertemperatur

Lufttemperatur



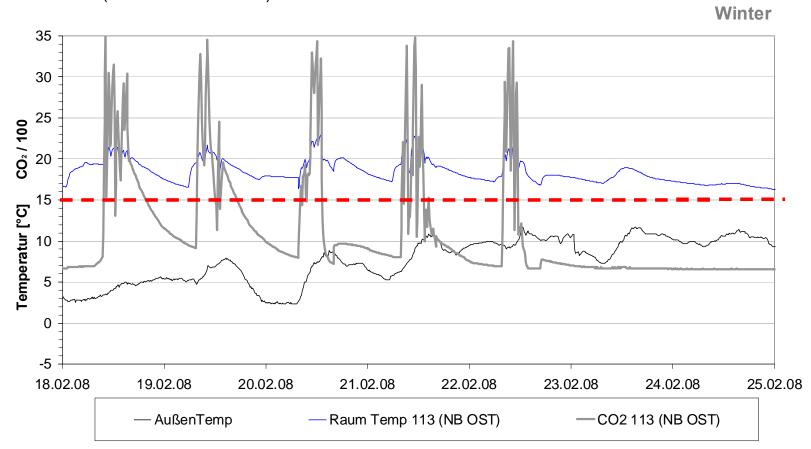
CO₂- Konzentration = Indikator für Luftqualität

- Empfehlung Umweltbundesamt
- DIN 1946-2 Obergrenze für belüftete Räume

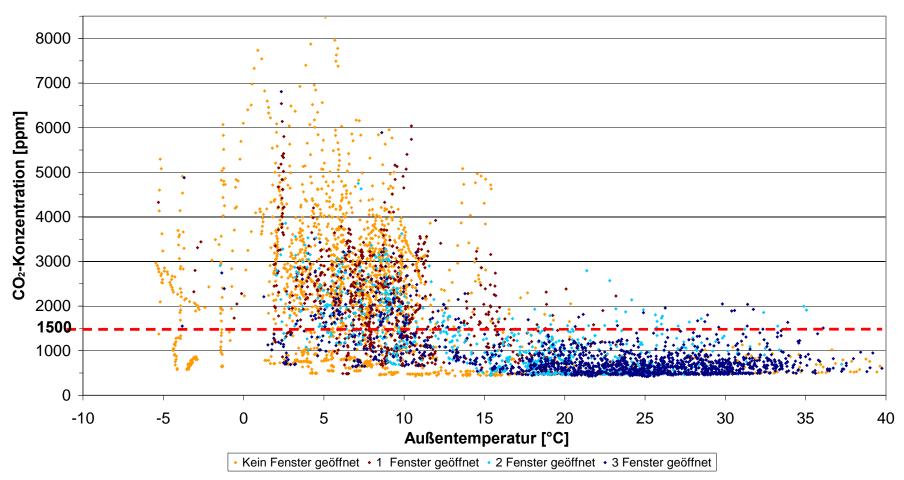
1.500 ppm

1.500 ppm

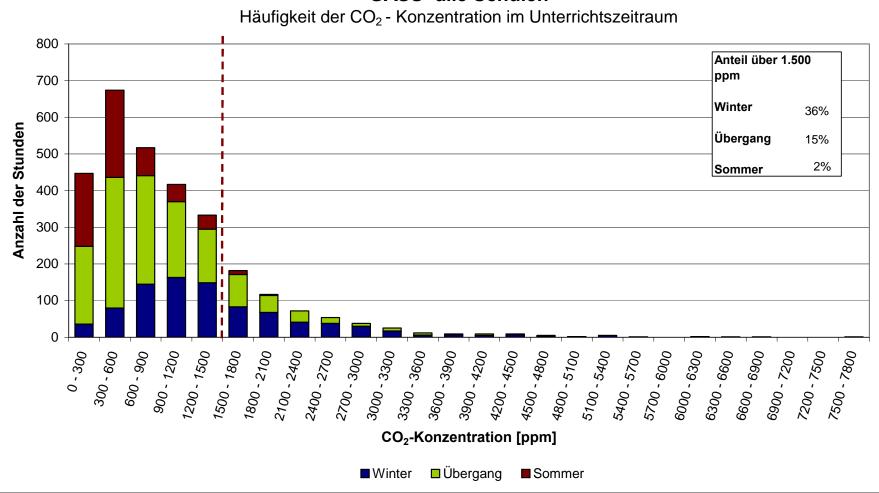
Dänische Studie an 6 Schulen [Olesen, 2004 / 2005]

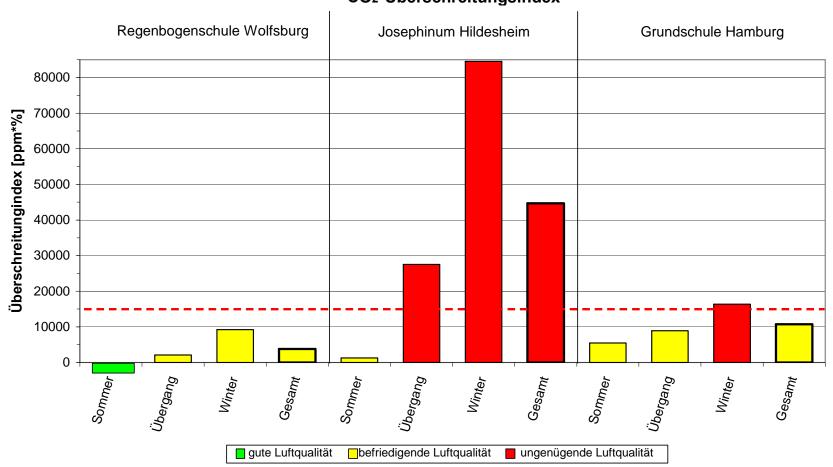


CO₂-Konzentration: Wochenverlauf

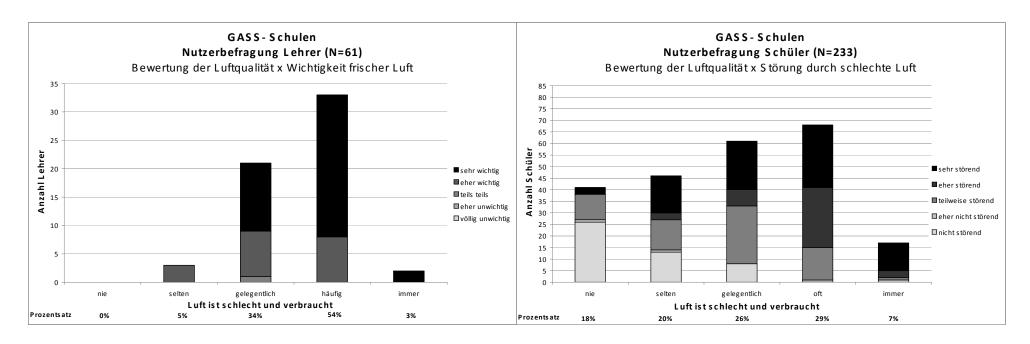

GASS Komfortmonitoring Josephinum Hildesheim Raum 113 (18.02.08 - 24.02.08)

GASS Komfortmonitoring Josephinum Hildesheim Raum 113 - CO₂-Konzentration über Außentemperatur


gesamter Messzeitraum

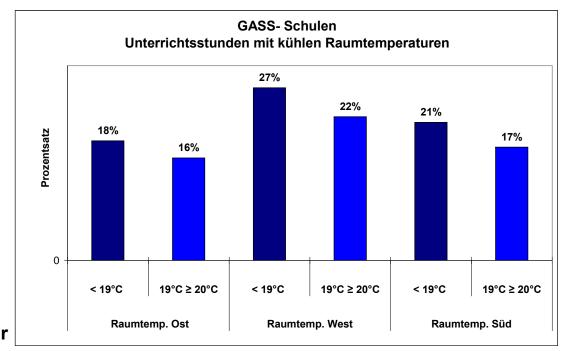

CO₂-Konzentration: Klassenraum

GASS- alle Schulen


GASS - Schulen CO₂-Überschreitungsindex

Bewertung der Luftqualität

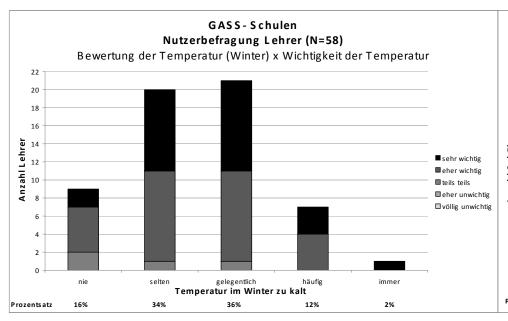
- "Luft ist häufig bis immer schlecht und verbraucht"
- 72 % der Lehrer
- 35 % der Schüler (WOB 17%, HI 79%, HH 7%)
- Sehr hohe Wichtigkeit bzw. Auswirkung auf das subjektive Wohlbefinden

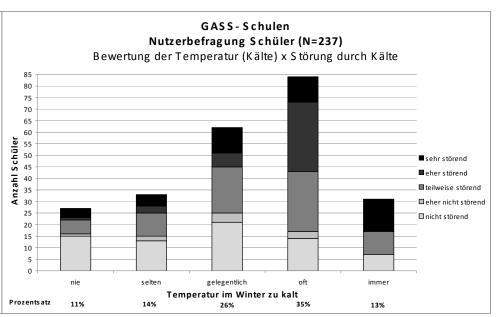


Raumtemperatur < 20°C

Hohe Anteile an Temperaturen unter 20°C

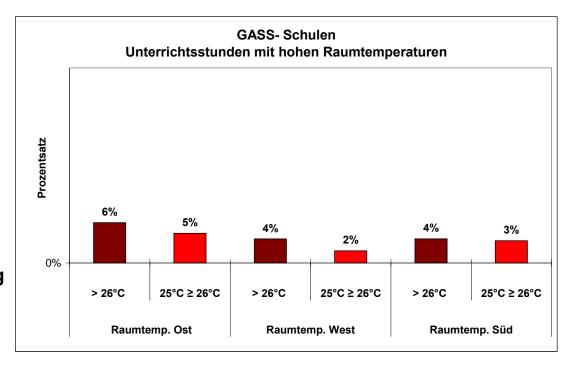
- Lüftungsverhalten
- gehäuft zu Unterrichtsbeginn
- Auskühlung bei Nachtabsenkung


Westausrichtung neigt zu kühlen Raumtemperatur



Bewertung der Temperatur

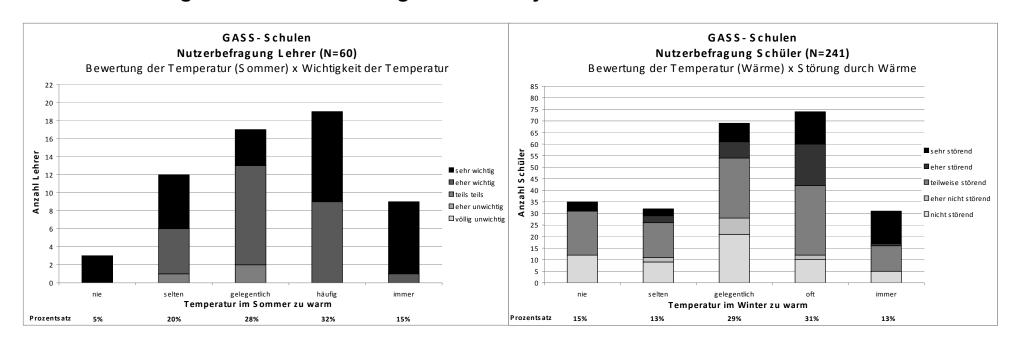
- "Temperatur ist im Winter häufig bis immer zu kalt"
- 14 % der Lehrer
- 48 % der Schüler
- Mäßige Wichtigkeit bzw. Auswirkung auf das subjektive Wohlbefinden



Raumtemperatur > 26°C

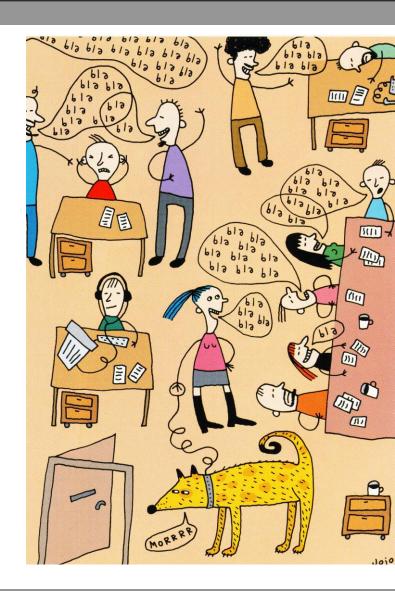
Mäßige Anzahl an Überhitzungsstunden

- Unterrichtszeit (8 bis 13 bzw. 15 Uhr)
- Sommerferien
- moderate Temperaturen im Messzeitraum


Ostausrichtung neigt vormittags zu Überhitzung

Bewertung der Temperatur

- "Temperatur ist im Sommer häufig bis immer zu warm"
- 47 % der Lehrer
- 44 % der Schüler
- Hohe Wichtigkeit bzw. Auswirkung auf das subjektive Wohlbefinden



Folgen unzulänglicher Akustik für Schüler

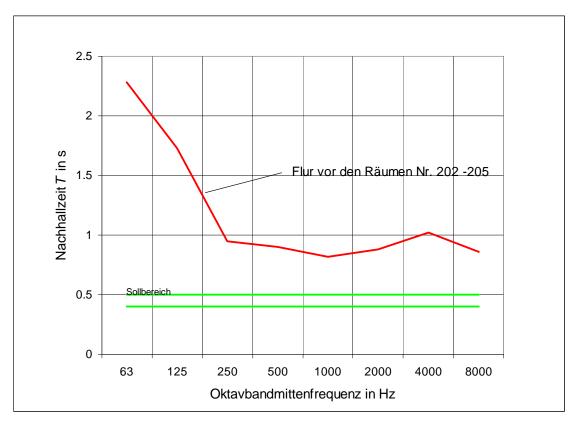
- Sprachverständnis wird behindert
- Sprach-, Kommunikations- und Entwicklungsstörungen
- Sprachinformationen gehen im Raum unter
- Ermüdung
- Beeinträchtigungen der Leistungen
- Verschlechterung des Sozialverhaltens, Aggression
- Vernachlässigung weniger offenkundiger Aspekte

Folgen unzulänglicher Akustik für Lehrkräfte

- Lärm ist Stressfaktor
- enorme psychische Belastung
- Heiserkeit und Kopfschmerzen

GASS Vorgehensweise Akustik

- Ermittlung der Nachhallzeiten
- Bewertung in drei Qualitätskategorien
- Untersuchung der Ursachen (u.a. endoskopisch bei Akustikdecken)
- Störschallpegelmessung und Bewertung nach DIN 4109
- Nutzerbefragungen zur Akustik (Schüler und Lehrkräfte)
- Ermittlung des Sanierungsbedarfs mit Empfehlungen zum Vorgehen
- Optimierungsvorschläge


Beispiel der Zusammenstellung und Bewertung aller mittleren Nachhallzeiten in einer der Schulen

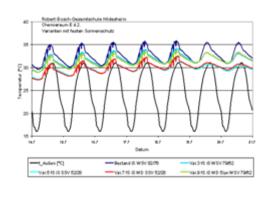
Beispiel einer Sanierungsempfehlung

Empfehlung:

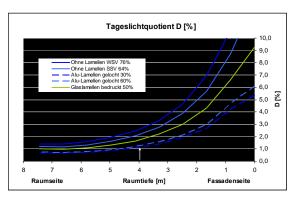
Ausbau der Deckenverkleidung und Neueinbau als stärker abgehängte Decke (mindestens 200 mm) mit Mineralwolle-Auflage mindestens 40 mm stark, zusätzliches Wandabsorberband ca. 1 m breit oberhalb der Türen.

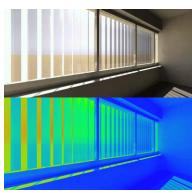
Konzept

Simulationen Energiekonzept Wirtschaftlichkeit Architektur



Thermische Simulation


- sommerlicher Wärmeschutz: Empfehlung von geeigneten passiven Maßnahmen (Sonnen- und Blendschutz, Verglasungsqualität)
- Bewertung Raumklima und Energiebedarf bei verschiedenen Lüftungskonzepten


Tageslichtsimulation

• Lichtverteilung im Raum und Tageslichtautonomie

Energetische Zielsetzung der DBU:

KfW 40/60-Standard:

- Jahresprimärenergiebedarf Q_D = 60 kWh/m²a NGF
- Spezifischer Transmissionswärmeverlust H_T mind. 45% unter EnEV-Standard

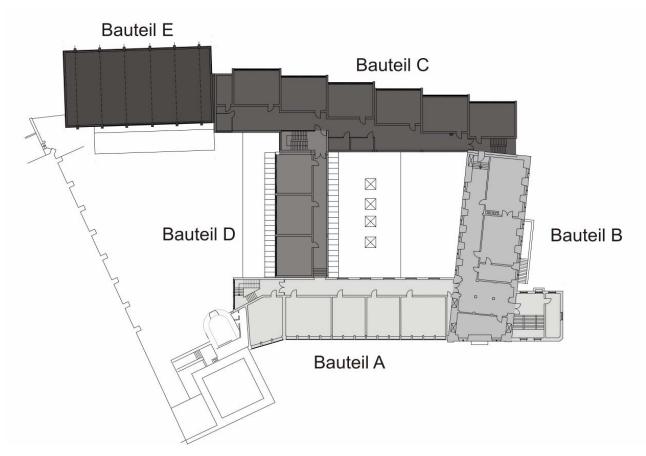
Passivhausstandard:

- Jahresprimärenenergiebedarf Q_p = 120 kWh/m²a EBF (WW, Heizung, Kühlung, Hilfs- Haushaltsstrom)
- Jahresheizwärmebedarf Q_h = 15 kWh/m²a EBF (EBF: NF mit 60% VF ohne Treppen, Schächte)

Berechnung folgender Varianten:

Variante 0 - Instandhaltung

Variante 1 - EnEV plus


Variante 2 - KfW 40 / 60

Variante 3 - Passivhausstandard (PH)

Machbarkeitsstudie Josephinum Hildesheim

BT A West

BT B Süd

BT C Ost

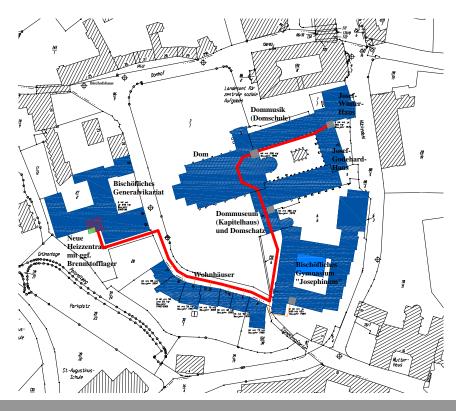
BT D Nord

Gymnasium Josephinum Hildesheim

IGS – Institut für Gebäude- und Solartechnik | TU Braunschweig

Univ. Prof. Dr. -Ing. M. N. Fisch

Bauteil	Maßnahme	Bestand	EnEV plus	kfW 40/60
Dach	Dämmung WLG 035	3 cm	19 cm	25 cm
AW Ost	Dämmung WLG 035	-	18 cm	25 cm
AW West	Dämmung WLG 040	-	6 cm	6 cm
West Brüstungen	Dämmung WLG 034	4 cm	17 cm	23 cm
Kellerboden	- Keine M	4 cm	4 cm	4 cm
Fenster Ost	Austausch	4,6 W/ m ² K	1,4 W/ m ² K	1,2 W/ m²K
Fenster West	Austausch	1,4 W/ m ² K	1,4 W/ m ² K	1,2 W/ m²K


Gebäudetechnik

Wärmeerzeugung (KG 420):

Anlehnung an Konzeptstudie "Nahwärmeversorgung Liegenschaften Dom Hildesheim"

Nahwärmenetz

- Trassenlänge 564 m
- Netzverluste etwa 178 MWh/a (ca. 4% vom Gesamtwärmebedarf)
- Investitionskosten von ca. 225 T€ inkl.
 Planung und Unvorhergesehenes

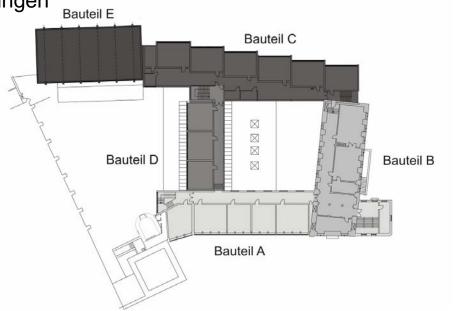
Gebäudetechnik

Auswahl wirtschaftlichste Versorgungsvariante:

Heizzentrale mit Holzhackschnitzelkessel und Gas-Kessel-Anlage

- Umbau der Heizzentrale im Generalvikariat (Unterbringung Gas-Kesselanlage)
- Neubau Holzhackschnitzellager (200 m³)
 inkl. Holzhackschnitzelkessel als Containerlösung
- Aufteilung in Grund- und Spitzenlast

Grundlast: Holzhackschnitzelkessel 500 kW
Mittellast: Gas-Brennwertkessel 1.000 kW
Spitzenlast: Gas-Niedertemperaturkessel 1.250 kW



Wärmeerzeugung:

- Demontage von Heizkörpern in Teilbereichen
- Einbau neuer voreinstellbarer Thermostatventile
- hydraulischer Abgleich
- Anpassung der Pumpen an neue Wärmeverteilung

- Reparatur der Dämmung der Wärmeverteilleitungen

Lufttechnische Anlagen

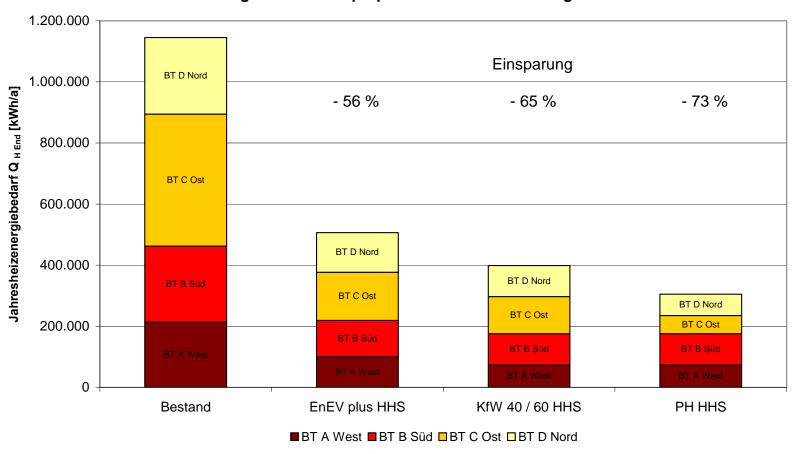
- jeweils eine zentrale Lüftungsanlage für jedes Bauteil
- mit Zu- und Abluft und Wärmerückgewinnung für alle Unterrichtsräume der Schule
- Verteilung mittels Wickelfalzrohren
- über Regelung CO₂ abhängig

Gebäudeautomation

- Gebäudeleittechnik (GLT) zur Regelung der Heizungs- und Lüftungsanlage
- Raumtemperaturregler, Ansteuerung der Thermostatventile der Heizkörper
- Volumenstromregler durch Präsenzmelder und Fensterkontakte
- Steuerung über zentralen Leitrechner

Technische Annahmen der energetischen Berechnung: Klassenraumzone

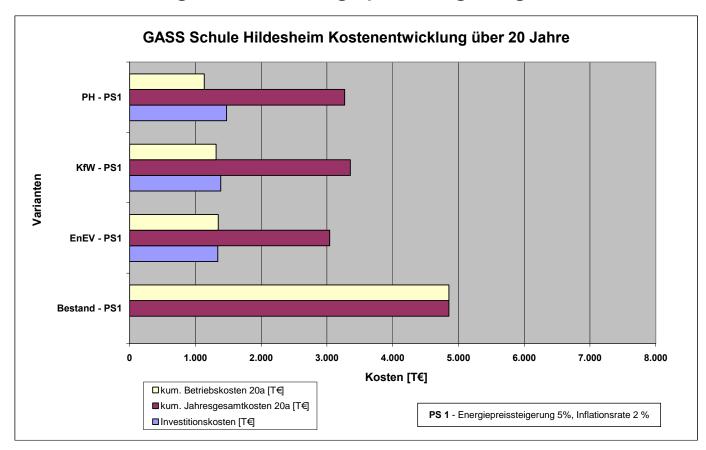
Alle Varianten (inkl. Bestand)


- Luftmengen 20 m³/(Person h)
- 2-facher Luftwechsel

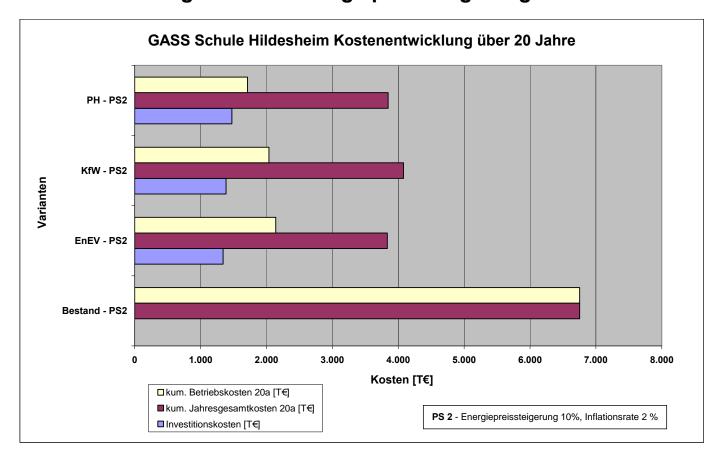
-KfW 40 / 60 und Passivhaus-Variante

- Lüftungsanlage mit WRG
- Wärmerückgewinnungsgrad 80%
- keine Befeuchtung

GASS - Hildesheim Energiekonzept - Technik


GASS Josephinum, Hildesheim Energetisches Einsparpotential Jahresheizenergie

EnEV-Berechnung mit IBP:18599



Kumulierte Betriebs-, Investitions- und Jahresgesamtkosten im Variantenvergleich und Energiepreissteigerung 5%

Kumulierte Betriebs-, Investitions- und Jahresgesamtkosten im Variantenvergleich und Energiepreissteigerung 10%

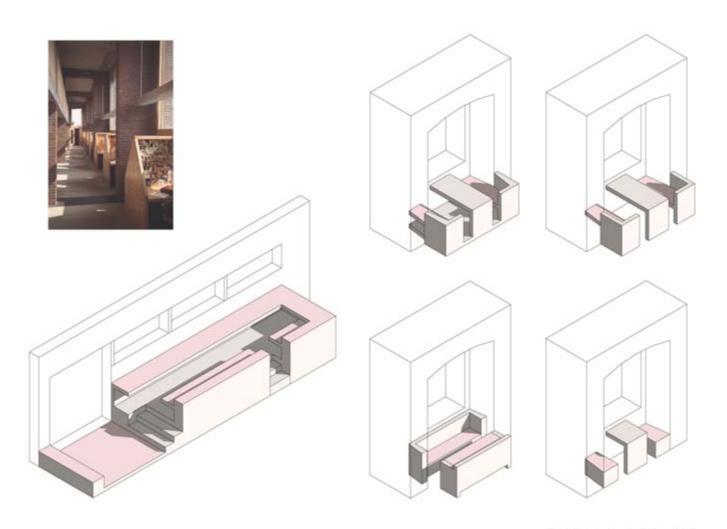
Mittleres Einsparspotential Gesamt

	Qн Endenergie	Q _P Primärenergie
	[Reduktion in %]	[Reduktion in %]
EnEV plus	56%	58%
KfW 40 / 60	68%	63%
Passivhaus	81%	72%

Zusammenfassung Ergebnisse

Architektur Pädagogik Akustik Luftqualität Energie

Pädagogik / Architektur


- Erweiterung der Lernumgebung um Flurbereiche
- Stärkung Arbeits- / Lese- / Spielecken
- flexible Raumnutzung (bewegliches Mobiliar, Raumteiler)
- Schränke, Regale für Materialien und persönliche Gegenstände
- Schaffung von Gruppenarbeitsplätzen
- Bewegungsfördernde Angebote im Innen- und Außenraum
- Gliederung in laute / leise Gebäudezonen
- Arbeits- und Pausenbereiche für Lehrkräfte im Ganztagsbetrieb

Prof. Léon, Institut für Entwerfen und Gebäudelehre

Beispiel Möbeltypologie Wandnischen

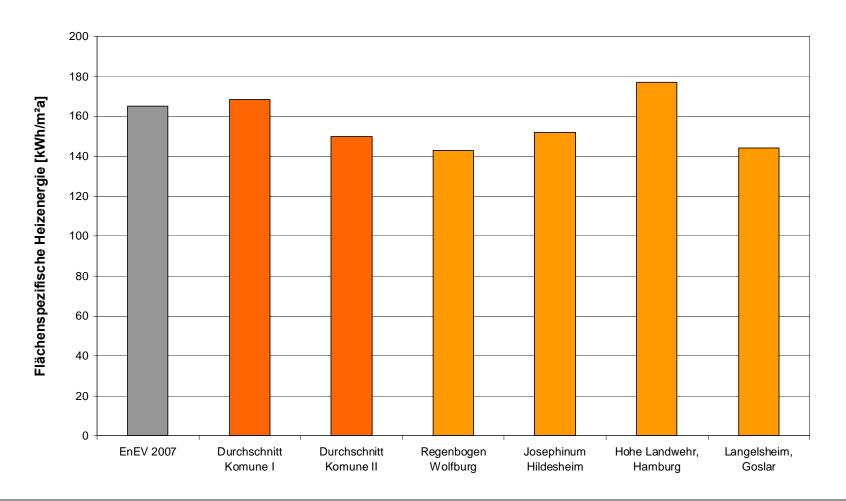
Luftqualität

Keine ausreichende Luftqualität bei üblicher Fensterlüftung

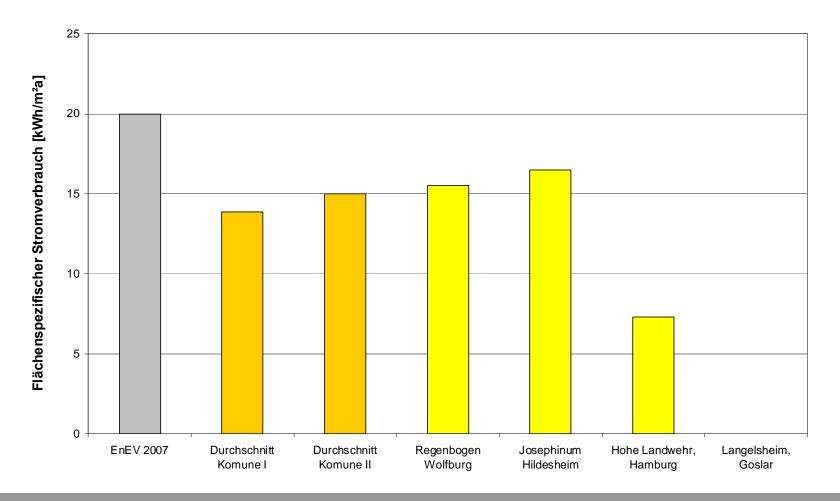
- Angeleitete Fensterlüftung (Stoßlüftung alle 20 Minuten)
 oder
- Kontrollierte Lüftung
 - Lüftungsgeräte mit WRG für hohe Energiestandards

Alternative für Sanierung:

Dezentrale Lüftungsgeräte


- geringere Anschaffungskosten
- keine lange, aufwändige Leitungsführung
- keine Volumenstromregler und Brandschutzklappen
- vereinfachte dezentrale Steuerung

Wärmeverbrauch


Verbrauchsdaten von Schulen

Stromverbrauch

Verbrauchsdaten von Schulen

- Verbrauchsdaten korrespondieren mit den Durchschnittswerten nach EnEV
- CO2 Konzentrationen durchgängig zu hoch
- ⇒ Handlungsbedarf für Lüftungskonzepte
- Hohe Zeitanteile mit zu kalten Temperaturen
- Weniger Probleme mit Überhitzungen
- Akustische Probleme in ca. 50% der Klassenräume
- Durchgängig akustische Probleme in Fluren, Treppenhäusern
- Sanierung hin zu energetisch optimierten Gebäuden wird erst durch steigende Energiekosten sinnvoll

Analyse und Optimierungsansätze

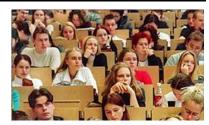
Lüftungskonzepte in Bildungsstätten Projektansatz

⇒ vorhandene Problematik: schlechte Luftqualität

⇒ Objekte: Universitäten, Schulen, Kindertagesstätten/ Kindergärten

Lüftungskonzepte in Bildungsstätten Ziele

⇒ Verbesserung der Luftqualität & der thermischen Behaglichkeit


⇒ **Steigerung der Leistungsfähigkeit**

Grundlage: 200 m³ Luftvolumen pro Klassenraum, 2-facher Luftwechsel

Lüftungskonzepte in Bildungsstätten

Objektauswahl und Kriterien

⇒ Kriterien der Auswahl von Referenzgebäuden

Lüftungskonzepte	 Freie Fensterlüftung Mechanische Lüftungsanlagen Hybride Systeme 	
Bauzeit/ Gebäudealter	1. Historische Bauten um 1900 (<i>Abb. 1</i>) 2. Gebäude der 50er/ 60er Jahre (<i>Abb. 2</i>) 3. Gebäude der 70er Jahre (<i>Abb. 3</i>) 4. Neubauten (<i>Abb. 4</i>)	
Nutzungsart	Grundschule Gymnasium/ Realschule/ Hauptschule Gesamtschule	
	Kindergarten/ Kindertagesstätte Universität	
Zustand der Gebäudehülle	1. unsaniert 2. saniert	
Betriebsdauer	Halbtagsbetrieb (nur vormittags) Ganztagsbetrieb (vor- und nachmittags)	

Abb. 1

Abb. 2

Abb. 3

Abb. 4

Lüftungskonzepte in Bildungsstätten Umsetzung

⇒ Bestandsanalyse

- Erarbeitung individueller Kriterien
- Dokumentation des bestehenden Lüftungsverhalten in Schulen, Kindertagesstätten und Universitätsräumen
- Nutzerbefragungen
- Messung im Bestand

⇒ Optimierungen

- Vermittlung von Wissen z.B. über Workshops
- Visualisierung von Luftqualität
- Zuweisung von Verantwortlichkeit
- Feldversuche unter angeleiteter Lüftung
- Einsatz verschiedener dezentraler Lüftungsgeräte

Lüftungskonzepte in Bildungsstätten

Ziele und technische Umsetzung

⇒ Unterstützung der natürlichen Fensterlüftung

• Kleine Volumenstrommenge (ca. 15 – 80 m³/h pro Gerät)

entilator mit Keramik- 'ärmespeicher	Automatisierte Spaltlüftung über Sensoren	Dezentrales Lüftungsgerät mit Gegenstromwärmetauscher	

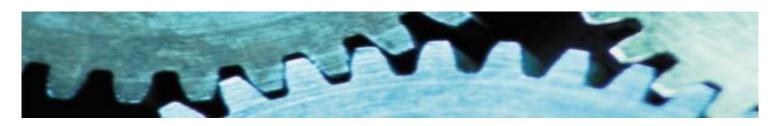
Lüftungskonzepte in Bildungsstätten

Technische Varianten

⇒ Unterstützung oder Alternativen der natürlichen Fensterlüftung

• Große Volumenstrommenge (ca. 120 – 1200 m³/h pro Gerät)

Brüstungsgeräte, unterhalb des Fensters in Wand integriert	Schullüftungsgerät zur dezentrale Be- und Entlüftung von einzelnen Räumen	Dezentrales Lüftungsgerät mit integriertem Nachheizregister	Wohnungslüftungsgerät mit Gegenstromwärmetauscher


dena- Coaching

Modellvorhaben "Niedrigenergiehaus im Bestand für Schulen"

Pilotphase 2007

Coaching

dena- Coaching

Modellvorhaben "Niedrigenergiehaus im Bestand für Schulen"

"Niedrigenergiehaus im Bestand für Schulen"

Sanierung von 78 Bildungsgebäuden

Aufgabe:

Coaching zum Fachthema

- Anlagentechnik
- Bilanzierung und Bedarfsberechnung nach der EnEV 2007 bzw. DIN V 18599 für Nichtwohngebäude

TU Braunschweig Institut für Gebäude- und Solartechnik

Dipl.-Ing. Architekt Volker Huckemann (GL)
Dipl. Ing. Lars Altendorf
Dipl. Ing. Jennifer König

Mühlenpfordtstraße 23, 38106 Braunschweig Tel: 0531 / 391 - 3555, Fax: 0531 / 391 – 8125

E-Mail: igs@tu-bs.de

Internet: www.igs.bau.tu-bs.de